If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+120t-2240=0
a = 4.9; b = 120; c = -2240;
Δ = b2-4ac
Δ = 1202-4·4.9·(-2240)
Δ = 58304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58304}=\sqrt{64*911}=\sqrt{64}*\sqrt{911}=8\sqrt{911}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-8\sqrt{911}}{2*4.9}=\frac{-120-8\sqrt{911}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+8\sqrt{911}}{2*4.9}=\frac{-120+8\sqrt{911}}{9.8} $
| 73-2x=98-3x | | 3y-5=1/2 | | 4x+60=14x | | 3=-6+x/2 | | 14–2a+6a+2+13a=16a+12+7a+4–6a | | 5x12=23 | | 8x-3=5x+5 | | 4x-24+6x=-1x+16 | | 8a+1–11–a+4=10–9+2a–7+5a | | 12+x=-5(4x+6) | | 3y+5+y=7 | | 13+2k=3k+4(k-3 | | 4k+6=(-12) | | 2(x+4)-(6-x)3=2(x-4) | | 9–20a+4+2+8a=a–7–13a–5–3 | | 5g+4(-5+3G=1-g | | .75(x-8)=x-4 | | 2a–10–3a+18–4a=6–9a+a+2+3a | | 9x-(5x+5)=5x-35 | | 4(x-2)+3(x-5)=7x-20 | | 4k+6=12 | | 13x-36=90-5x | | 8-m/5=19 | | 3/4x-1=3/8+x | | (-1/2)x-7=-11 | | 16t^2+16t-320=0 | | 8/12+9k/12=71/12 | | 2(6d=3)=18-3(16-3d) | | 4x+1/2(8+6)=2(4x+3) | | 1-4n+n=13+3n | | 3(x-4)-(x-2)=1 | | 3x+2x+2=7 |